行业动态

聚焦行业动态,洞悉行业发展

真空甩带炉工作原理是什么呢
发布时间:2020-12-21   浏览:2908次

  真空甩带炉工作原理是什么呢

  通常为防止真空甩带炉受热后变形和密封材料受热变质,炉壳一般用水冷或气冷降温。炉膛位于密封炉壳内。根据炉子用途,炉膛内部装有不同类型的加热元件,如电阻、感应线圈、电极和电子枪等。熔炼金属的炉膛内装有坩埚,有的还装有自动浇注装置和装卸料的机械手等。真空系统主要由真空泵、真空阀门和真空计等组成。

真空甩带炉工作原理是什么呢

  真空甩带炉是利用热媒水的相变进行热交换的,燃料燃烧释放出的热量被热媒水吸收,当温度上升***某真空状态下的饱和温度时,蒸发成饱和和蒸汽,完成一次相变过程。

  凝结水流进蒸发室继续吸热,完成相变循环。真空甩带炉的下部结构由燃烧室和传热管束组成;上部为真空室,其中插入了U型管热交换器。真空室外接抽气单元,使真空室保持稳定的真空度,并将真空室内不凝结气体抽出,提高U型热交换器的换热效率。

  今天有关真空熔炼炉的原理小编就分享到这了,希望对大家有所帮助。如有需要欢迎电话咨询联系。

免责声明:本站部分图片和文字来源于网络收集整理,仅供学习交流,版权归原作者所有,并不代表我站观点。本站将不承担任何法律责任,如果有侵犯到您的权利,请及时联系我们删除。

相关推荐

23 April 2019
真空甩带炉热处理炉特性

真空甩带炉热处理炉特性

  真空甩带炉热处理炉特性   真空甩带炉热处理炉特性有哪些呢?今天八佳小编就和大家说说,我们做个详细的了解。   (1) 严格的真空密封:   众所周知,金属零件进行真空热处理均在密闭的真空炉内进行,因此,获得和维持炉子原定的漏气率,保证真空炉的工作真空度,对确保零件真空热处理的质量有着非常重要的意义。所以真空甩带炉的一个关键问题,就是要有可靠的真空密封结构。为了保证真空炉的真空性能,在真空热处理炉结构设计中必须遵循一个基本原则,就是炉体要采用气密焊接,同时在炉体上尽量少开或者不开孔,少采用或者避免采用动密封结构,以尽量减少真空泄漏的机会。安装在真空炉体上的部件、附件等如水冷电极、热电偶导出装置也都必须设计密封结构。   (2)大部分加热与隔热材料只能在真空状态下使用:   真空甩带炉的加热与隔热衬料是在真空与高温下工作的,因而对这些材料提出了耐高温,蒸汽压低,辐射效果好,导热系数小等要求。对抗氧化性能要求不高。所以,真空热处理炉广泛地采用了钽、钨、钼和石墨等作加热与隔热构料。这些材料在大气状态下极易氧化,因此,常规热处理炉是不能采用这些加热与隔热材料。   (3)水冷装置:   真空甩带炉的炉壳、炉盖、电热元件,分别处置(水冷电极)、中间真空隔热门等部件,均在真空、受热状态下工作。在这种极为不利的条件下工作,必须保证各部件的结构不变形、不损坏,真空密封圈不过热、不烧毁。因此,各部件应该根据不同的情况设置水冷装置,以保证真空热处理炉能够正常运行并有足够的使用寿命。   (4)采用低电压大电流:   在真空容器内,当真空空度为几托一lxlo-1托的范围内时,真空容器内的通电导体在较高的电压下,会产生辉光放电现象。在真空热处理炉内,严重的会产生弧光放电,烧毁电热元件、隔热层等,造成重大事故和损失。因此,真空热处理炉的电热元件的工作电压,一般都不超过80-100伏。同时在电热元件结构设计时要采取有效措施,如尽量避免有***的部件,电极间的间距不能太小窄,以防止辉光放电或者弧光放电的发生。   (5)自动化程度高:   真空熔炼炉的自动化程度之所以较高,是因为金属工件的加热、冷却等操作,需要十几个甚至几十个动作来完成。这些动作内在真空热处理炉内进行,操作人员无法接近。同时,有些动作如加热保温结束后,金属工件进行淬火工序须六个动作并且要在15秒钟以内完成。在这样迅速的条件来完成许多动作,是很容易造成操作人员的紧张而构成误操作。因此,只有较高的自动化才能准确、及时按程序协调动。

15 July 2024
气相沉积炉在微电子制造中的重要应用及其优势

气相沉积炉在微电子制造中的重要应用及其优势

  气相沉积炉在微电子制造中的重要应用及其优势  微电子制造作为现代信息技术的基石,对高性能、高精度的薄膜材料制备技术提出了严苛的要求。气相沉积炉作为一种先进的薄膜制备设备,在微电子制造领域发挥着举足轻重的作用。气相沉积炉厂家八佳电气将探讨气相沉积炉在微电子制造中的重要应用,并通过具体实例说明其优势。  一、气相沉积炉在微电子制造中的重要应用  集成电路制造  在集成电路制造过程中,气相沉积炉被广泛应用于制备各种金属薄膜、介质薄膜和绝缘薄膜。例如,通过气相沉积技术,可以在硅片上沉积铜、铝等金属薄膜,形成电路中的导线;同时,也可以制备出氧化铝、氮化硅等介质薄膜,用于电路中的电容、电感等元件。这些薄膜材料具有优异的电学性能和稳定性,能够确保集成电路的性能和可靠性。  半导体器件制造  气相沉积炉在半导体器件制造中同样发挥着关键作用。例如,在制备晶体管、二极管等器件时,需要利用气相沉积技术制备出高质量的氧化物薄膜、氮化物薄膜等。这些薄膜材料具有良好的绝缘性和稳定性,能够提高器件的性能和寿命。此外,气相沉积炉还可用于制备薄膜晶体管(TFT)等平板显示器件的关键材料,推动显示技术的不断发展。  微电子封装  微电子封装是保护芯片免受环境侵害、实现电气连接的关键环节。气相沉积炉可用于制备封装过程中的阻挡层、密封层等薄膜材料。这些薄膜材料具有优异的密封性和耐腐蚀性,能够有效地防止水分、氧气等有害物质侵入芯片内部,确保芯片的稳定性和可靠性。  二、气相沉积炉在微电子制造中的优势  高精度制备  气相沉积炉具有高度的精确性和可控性,能够制备出厚度均匀、成分精确的薄膜材料。通过精确控制沉积条件,如温度、压力、气氛等,可以实现纳米级别的薄膜厚度控制,满足微电子制造对高精度薄膜材料的需求。  材料多样性  气相沉积炉适用于制备多种类型的薄膜材料,包括金属、氧化物、氮化物等。这种多样性使得气相沉积炉能够满足微电子制造中不同器件和工艺对薄膜材料的需求。  高质量薄膜  气相沉积技术制备的薄膜具有致密、无缺陷的特点,能够显著提高微电子器件的性能和可靠性。此外,气相沉积炉还能够在低温下制备薄膜,避免了高温过程对基底材料的损伤,扩大了其在微电子制造中的应用范围。  高 效生产  气相沉积炉通常具有较高的生产效率,能够在大面积基底上快速制备薄膜。这使得气相沉积炉在微电子制造的大规模生产中具有显著优势,能够满足市场对高性能微电子器件的日益增长需求。  综上所述,气相沉积炉在微电子制造中具有重要的应用价值。通过高精度制备、材料多样性、高质量薄膜和高 效生产等优势,气相沉积炉为微电子制造提供了可靠的薄膜材料制备解决方案,推动了微电子技术的不断进步和发展。