行业动态

聚焦行业动态,洞悉行业发展

真空烧结的炉热区设计及气体管理系统运行要点
发布时间:2022-12-05   浏览:1713次

  真空烧结炉热区设计及气体管理系统运行要点

  真空烧结炉在升温平和均热处理温度达到600°C时,剩余聚合物粘结剂的除气进程产生。为了有用运送气体物质到热区外,需要在箱体内各个点都有一股连续同质的净化气流。气密炉胆(或马弗)的规划可以减小真空烧结炉的尺寸,实现外部加热。这种规划的主要优势在于,炉子供给了高纯气氛并保证热气流均匀地穿过零件。但是,在炉内安装一个冷却风扇并不是件容易的事情,这会导致较长的生产周期,炉胆也会产生更多的投资、维护和能源成本。

真空烧结炉

  其根底架构是一个圆形的碳钢结构(分配器),它为热区、加热元件和隔热层供给均匀的支撑。扁平条状的石墨加热元件彻底包围了热区的圆柱形部分,并且均匀排列以便为工作区供给能量传递。附加在前后端部的加热元件进一步提高温度均匀性至±3°C。保温层内部是多层高性能石墨毡,外表是CFC资料。工艺气体的输入独立可调且流量可控,这有助于在热区内部和分配器及炉壳的间隙中坚持一个压差。均匀的工艺气体在热区内外循环,以保证粘结剂均匀蒸腾,防止粘结剂再次沉积,也使热区免受污染。

免责声明:本站部分图片和文字来源于网络收集整理,仅供学习交流,版权归原作者所有,并不代表我站观点。本站将不承担任何法律责任,如果有侵犯到您的权利,请及时联系我们删除。

相关推荐

19 September 2022
石墨化炉在针状焦材料发展中有不可缺少的作用

石墨化炉在针状焦材料发展中有不可缺少的作用

  石墨化炉在针状焦材料发展中有不可缺少的作用  石墨化炉热处理过的针状焦作为一种新型炭材料,因其易于石墨化、电导率高、价格低廉、灰分低等优异特性,逐渐成为一种优质的锂离子电池负极材料wu,且已占据日本近60%的市场.近期,国内在针状焦的生产技术上取得了较大突破,实现了规模生产,但其用作锂离子电池负极材料的研究较少.  一般软炭(如沥青焦、石油焦等)经过2500?3000℃的石墨化炉热处理后,会转化为石墨结构,但该过程极其复杂,既涉及石墨微晶在径/轴向的有序排列、晶界的消失、晶体界面处C-C六圆环的形成、晶体的生长,还涉及石墨层边界处不饱和碳原子的催化反应、碳原子或气体分子的热震动、石墨微晶的各向异性特性、石墨层层间的范德华力等微观热力学或动力学行为.目前,热处理温度与材料石墨微晶参数之间的内在关系巳得到系统研究,而石墨化机理的基础研究较少.本工作以煤系针状焦为原料,在分析热处理温度对针状焦微结构的影响规律的基础上,深入研究了针状焦的石墨化机理及其用作锂离子电池负极材料的电极性能和储锂机制.  将煤系针状焦机械粉碎后,用。45岬筛网进行筛分,置入炭化炉,先以5°C/min的升温速率分别升温至700P、1000°C,1500°C,并标记为NC700、NC1000、NC1500;格样品置于高温石墨化炉,先以15-C/min的升温速率升至1500℃,再以7°C/min的升温速率升至2250℃、2800℃并恒温30tnin,降至室温后得到石墨化样品,相应标记为NC2250、NC2800。  在1500-2250℃的高温石墨化炉石墨化过程中,体系获得更大的能量,在表面能以及大兀健的作用下,石墨微晶沿轴向发生平行排列;同时,体系中碳原子的热震动频率增大,平行于平面网格方向的振幅增大,使得晶体平面上的位错线和晶界逐渐减少,并放出潜热。  随着石墨化炉石墨化温度的继续升高,碳的蒸发率以指数式上升,这时体系中充满各种碳原子或气体分子,且石墨微晶在径向的间距接近分子水平;在石墨层边缘碳的自催化以及界面能的推动力作用下,各种游离的碳原子与相邻石墨微晶的边缘碳发生反应,形成C-C六圆环;在范德华力作用下,石墨层的“褶皱”消失,并趋向平面结构,终形成三维有序的石墨化针状焦。针状焦经过2800℃的高温热处理后,终逐步转化成三维有序的石墨结构。