公司动态

聚焦行业动态,洞悉行业发展

真空烧结炉规格技术参数总结
发布时间:2017-02-08   浏览:3383次

  真空烧结炉是一种间歇式感应加热炉,用于硬质合金、粉沫冶金行业生产的碳化钨粉、碳化钛粉、碳化钒粉等金属及复合金属粉沫。

  其采用2300℃超高温炉体,可兼容满足各种颗粒料WC粉和复合料碳化加热工艺。除此之外,真空烧结炉还采用数显化智能控温系统。

  该工业炉的主要技术参数:

  1、***使用温度:1800℃、2300℃

  2、高温区容积:0.01m3、0.02m3、0.03m3、0.05m3、0.1m3、0.15m3、0.2m3、0.3m3

  3、炉内的工作气氛:氢气、氮气、惰性气体等

  4、温度均匀度:≤±10℃ 温度测量:远红外线光学测温测温范围800~2400℃或1000~3000℃;测温精度1%。

  5、温度控制:程序控制、手动控制; 控温精度:±1℃

  6、极限升温速度:200℃/分钟(空炉)

  真空烧结炉使用的该系统明显改善了碳化质量,具有反应完全、粒度均匀、化合含碳量高等优势,而且产量高、劳动条件好、使用寿命长。

thumb_20161019115116_1424.jpg

免责声明:本站部分图片和文字来源于网络收集整理,仅供学习交流,版权归原作者所有,并不代表我站观点。本站将不承担任何法律责任,如果有侵犯到您的权利,请及时联系我们删除。

相关推荐

03 June 2025
真空速凝炉如何突破传统设备周期性生产导致的效率瓶颈

真空速凝炉如何突破传统设备周期性生产导致的效率瓶颈

真空速凝炉如何突破传统设备周期性生产导致的效率瓶颈在金属材料制备领域,传统速凝设备长期受制于周期性生产模式带来的效率瓶颈。单炉次生产周期长、设备利用率低、能耗波动大等核心问题,严重制约着高性能金属材料的规模化供应。真空速凝炉通过重构工艺逻辑与设备架构,为突破这些行业痛点提供了系统性解决方案。传统周期性生产模式的效率损耗主要源于三大技术短板。首先是设备空置率居高不下,常规速凝设备单炉次作业时间普遍超过8小时,其中加热、冷却等非增值环节占比达40%以上。某特种合金生产企业的实测数据显示,传统设备年有效作业时间不足60%,大量产能被消耗在炉体升降温过程中。其次是工艺连续性差,批次间需进行长达2-3小时的炉膛清理与成分校验,导致生产节拍频繁中断。更关键的是能源利用效率低下,开放式炉体在反复升降温中造成35%-45%的能源浪费。真空速凝炉通过工艺环境创新实现生产节拍优化。其密闭腔体设计支持快速抽真空与气氛置换,单炉次准备时间缩短至传统工艺的1/3以下。某磁性材料制造商的对比测试表明,在NdFeB速凝薄带生产中,真空设备的单炉次周期从传统工艺的9.2小时压缩至5.8小时,设备台时产量提升58%。这种效率跃升源于真空环境对工艺流程的改造——加热、熔炼、速凝、冷却等工序在密闭空间内实现无缝衔接,彻底消除传统工艺中必须的开炉降温、环境清理等非生产环节。连续化生产模式是真空速凝炉突破效率瓶颈的核心创新。通过多工位旋转平台与智能温控系统的协同,设备可实现"熔炼-速凝-冷却"的循环作业。当炉次进入冷却阶段时,第二个炉次已启动熔炼程序,设备利用率从传统模式的55%提升至85%以上。某高端轴承钢生产企业的实践数据显示,采用真空连续速凝工艺后,年产能从1200吨跃升至2100吨,设备综合效率(OEE)提升37个百分点。这种连续作业模式特别适用于小批量、多品种的生产场景,换型准备时间缩短至20分钟以内。在能源管理方面,真空速凝炉展现出复合节能优势。其密闭腔体与效率高保温结构使热损耗降低60%以上,配合智能功率调节系统,单位产量能耗较传统工艺下降42%。某新能源汽车电机材料供应商的实证表明,在年产能5000吨规模下,真空工艺每年可节省标准煤1800吨,减排二氧化碳4700吨。这种节能效应在高温合金、储氢合金等高能耗材料制备中表现尤为显著。从质量控制视角看,真空环境带来的工艺稳定性提升同样关键。传统速凝工艺中,空气中的氧、氮等杂质会在材料表面形成氧化层,导致成分偏析和性能波动。真空速凝炉将氧含量控制在5ppm以下,使合金成分均匀性提升3-5个等级。某精密合金制造商的检测数据显示,采用真空工艺后,产品标准偏差从0.18%降至0.06%,高端产品合格率突破99.2%。当前,真空速凝技术已在航空航天、新能源汽车、电子信息等战略领域形成规模化应用。随着3D打印用金属粉末、高熵合金等新型材料需求的持续增长,这项技术为破解周期性生产瓶颈提供了可靠路径。通过工艺逻辑的深度重构,真空速凝炉不仅实现生产效率的质变,更推动着金属材料制备行业向连续化、智能化方向加速转型。

17 March 2025
气相沉积炉操作中常见的异常情况有哪些

气相沉积炉操作中常见的异常情况有哪些

气相沉积炉操作中常见的异常情况有哪些气相沉积炉作为一种高科技设备,在微电子、光电子、能源及航空航天等领域具有广泛应用。然而,在实际操作过程中,气相沉积炉可能会遇到多种异常情况,这些异常情况不仅影响生产效率,还可能对设备造成损害。气相沉积炉厂家洛阳八佳电气将详细介绍气相沉积炉操作中常见的异常情况及其可能原因。 一、炉温异常炉温异常是气相沉积炉操作中常见的异常情况之一。当炉温过高或过低时,都会影响沉积效果和薄膜质量。可能的原因包括加热元件故障、控制系统问题、温度传感器故障等。此时,应检查加热元件是否损坏或老化,控制系统是否正常工作,以及温度传感器是否准确。 二、气体流量不稳定气体流量不稳定可能导致沉积不均匀或薄膜质量下降。可能的原因包括气体管道堵塞、泄漏或气路阀门故障等。为解决这一问题,需要逐一排查这些可能的原因,并进行相应的清理、修复或更换工作。 三、炉内压力异常炉内压力异常可能是由于压力传感器故障、真空泵失效或气路系统泄漏等原因引起的。这可能导致沉积过程中的不稳定,甚至损坏设备。应根据实际情况进行排查和修复,确保炉内压力稳定在设定范围内。 四、炉体振动或噪音过大炉体振动或噪音过大可能是由于炉体结构松动、风机故障或电机运行不稳定等原因造成的。这不仅会影响设备的正常运行,还可能对操作人员造成安全隐患。应检查并紧固炉体结构,检查并更换损坏的风机或电机。 五、进样口漏气进样口漏气可能导致气体流量不稳定或沉积效果不佳。可能的原因包括隔垫损坏、螺母拧得太紧等。此时,应更换隔垫,并确保螺母不要拧得太紧,以保证气路的密封性。 六、检测器故障检测器故障可能导致无法检测到沉积过程中的信号或检测结果不准确。可能的原因包括检测器熄火、火未点着或检测器喷嘴堵塞等。对于FID检测器,可以尝试重新点火;对于其他类型的检测器,可以清洗喷嘴或进行其他相应的维修操作。 七、基线漂移或不稳定基线漂移或不稳定性可能导致检测结果的准确性下降。可能的原因包括基线受热损失、老化柱子、固定液受热损失等。为解决这一问题,可以尝试调整温度、老化柱子或更换固定液等。 八、峰异常峰异常可能表现为不出峰、峰很小、峰拖尾等。可能的原因包括样品前处理不够干净、进样口污染、进样技术欠佳等。为解决这些问题,可以加强样品前处理、清洗进样口或提高进样技术等。综上所述,气相沉积炉操作中常见的异常情况包括炉温异常、气体流量不稳定、炉内压力异常、炉体振动或噪音过大、进样口漏气、检测器故障、基线漂移或不稳定以及峰异常等。针对这些异常情况,操作人员应熟悉可能的原因并采取相应的解决措施,以确保设备的正常运行和生产效率。