行业动态

聚焦行业动态,洞悉行业发展

真空甩带炉怎么安全操作
发布时间:2021-05-06   浏览:5886次

  真空甩带炉怎么安全操作

  在真空甩带炉生产车间的工作需要用心去做的,稍大意就会对生命安全造成不可估量的后果。厂房里面的实验电炉、高温电炉、管式炉、真空炉的师傅们在上岗前都是要经过培训并且具有一定经验的,可见生产流程的严谨性,那么在真空炉的具体操作上究竟怎么做才能将危险点降到zui低呢?

真空甩带炉怎么安全操作

  操作真空炉的师傅们都知道起动真空炉电源,将控制柜开关设置在自动控制位置处。将真空甩带炉工艺规程的各参数输入计算机。按工艺要求选择好真空炉的冷却介质和冷却方式及压力。按下循环起动钮,设备执行程序:抽真空--加热--冷却自动完成。

  记得要随时检查设备各系统运行是否正常,如有异常及时报告领班处理。在出真空甩带炉前,应恢复炉内正常压力,指示灯正常后打开炉门(盖)。卸料时,应仔细操作,工件和工装等均不得碰撞炉口。

  另外,正是在真空甩带炉稳定设备的前提下,性能优化的脱碳新工艺,通过总结和分析了碳氧利用率和铝脱氧和合金化的收益率,发现一些经验公式,真空时间大大减少,生产速度加快,提高产品的质量。

免责声明:本站部分图片和文字来源于网络收集整理,仅供学习交流,版权归原作者所有,并不代表我站观点。本站将不承担任何法律责任,如果有侵犯到您的权利,请及时联系我们删除。

相关推荐

15 August 2019
真空熔炼炉的作用

真空熔炼炉的作用

  真空熔炼炉的作用   真空熔炼炉是在真空条件下,利用中频感应加热原理,将金属熔化的成套真空冶炼设备。适用于科研与生产单位对镍基合金及特殊钢、精密合金、高温合金、有色金属及其合金在真空或保护气氛下进行熔炼和浇铸。也可用做稀土金属及贮氢材料的熔炼和浇铸。   在熔炼过程中可在不破坏熔炼室真空情况下进行测温、取样、捣料、观察、主补加料和合金成份调整等。与此同时可通过充气阀充入惰性气体以控制真空熔炼炉内的压力和气氛。浇铸可浇一锭和多锭及装入预热保温锭模、水冷锭模、砂型箱等以及进行离心浇铸。按功能形式分为周期式及半连续式作业。   真空熔炼炉的炉胆结构和加热器布置,炉温均匀性好。有特殊结构脱脂箱,密封效果好,脱脂完全,对炉内元件无污染。真空熔炼炉炉具备柔性抽真空、真空烧结、微正压烧结、分压烧结、微正压脱脂等功能用先进的隔热结构和材料,炉胆隔热性能好,蓄热少,比传统设计节能20%以上。是触摸屏操作,PLC集中控制,操作简单,可靠性高。   如果在工作中真空熔炼炉有超温超压等故障,设备就会自动报警,机械式自动压力保护,动作互锁等功能,设备安全性高。同时还可远程操作、远程故障诊断和远程软件升级等功能。

19 September 2022
石墨化炉在针状焦材料发展中有不可缺少的作用

石墨化炉在针状焦材料发展中有不可缺少的作用

  石墨化炉在针状焦材料发展中有不可缺少的作用  石墨化炉热处理过的针状焦作为一种新型炭材料,因其易于石墨化、电导率高、价格低廉、灰分低等优异特性,逐渐成为一种优质的锂离子电池负极材料wu,且已占据日本近60%的市场.近期,国内在针状焦的生产技术上取得了较大突破,实现了规模生产,但其用作锂离子电池负极材料的研究较少.  一般软炭(如沥青焦、石油焦等)经过2500?3000℃的石墨化炉热处理后,会转化为石墨结构,但该过程极其复杂,既涉及石墨微晶在径/轴向的有序排列、晶界的消失、晶体界面处C-C六圆环的形成、晶体的生长,还涉及石墨层边界处不饱和碳原子的催化反应、碳原子或气体分子的热震动、石墨微晶的各向异性特性、石墨层层间的范德华力等微观热力学或动力学行为.目前,热处理温度与材料石墨微晶参数之间的内在关系巳得到系统研究,而石墨化机理的基础研究较少.本工作以煤系针状焦为原料,在分析热处理温度对针状焦微结构的影响规律的基础上,深入研究了针状焦的石墨化机理及其用作锂离子电池负极材料的电极性能和储锂机制.  将煤系针状焦机械粉碎后,用。45岬筛网进行筛分,置入炭化炉,先以5°C/min的升温速率分别升温至700P、1000°C,1500°C,并标记为NC700、NC1000、NC1500;格样品置于高温石墨化炉,先以15-C/min的升温速率升至1500℃,再以7°C/min的升温速率升至2250℃、2800℃并恒温30tnin,降至室温后得到石墨化样品,相应标记为NC2250、NC2800。  在1500-2250℃的高温石墨化炉石墨化过程中,体系获得更大的能量,在表面能以及大兀健的作用下,石墨微晶沿轴向发生平行排列;同时,体系中碳原子的热震动频率增大,平行于平面网格方向的振幅增大,使得晶体平面上的位错线和晶界逐渐减少,并放出潜热。  随着石墨化炉石墨化温度的继续升高,碳的蒸发率以指数式上升,这时体系中充满各种碳原子或气体分子,且石墨微晶在径向的间距接近分子水平;在石墨层边缘碳的自催化以及界面能的推动力作用下,各种游离的碳原子与相邻石墨微晶的边缘碳发生反应,形成C-C六圆环;在范德华力作用下,石墨层的“褶皱”消失,并趋向平面结构,终形成三维有序的石墨化针状焦。针状焦经过2800℃的高温热处理后,终逐步转化成三维有序的石墨结构。