公司动态

聚焦行业动态,洞悉行业发展

真空烧结炉安全检查
发布时间:2016-11-12   浏览:7814次

  真空烧结炉在使用前是需要做一系列的安全检查来保证使用安全的。今天,洛阳八佳电气科技股份有限公司的工作人员就来跟大家说一说。

  首先,检查真空泵电源系统,皮带盘皮带松紧,真空泵油是否位于油封观察孔中线。检查妥后,人工转动真空泵皮带盘,如无异常,可在关闭蝶阀的情况下,启动真空烧结炉的真空泵。

  其次,检查真空烧结炉的炉内情况,要求真空炉体内一级卫生,感应圈绝缘良好,密封真空胶带具有弹性,尺寸合格,以及炉身杠杆手把启动是否灵活。

  另外,真空烧结炉安全检查还需转动式麦氏真空计,看是否合乎要求,以及石墨坩埚等装炉配件是否齐全等。当准备就绪后,接通电源,中频电源合闸,按中频启动规则,试启动变频,成功后停止变频,方可开炉。


免责声明:本站部分图片和文字来源于网络收集整理,仅供学习交流,版权归原作者所有,并不代表我站观点。本站将不承担任何法律责任,如果有侵犯到您的权利,请及时联系我们删除。

相关推荐

11 August 2025
创新石墨化技术:推动碳材料产业升级

创新石墨化技术:推动碳材料产业升级

创新石墨化技术:推动碳材料产业升级在碳材料产业的发展进程中,创新石墨化技术正成为推动产业升级的核心驱动力。传统石墨化工艺在效率、能耗及产品质量等方面存在一定局限,而创新石墨化技术的涌现,为这些问题提供了突破性解决方案。从提升碳材料性能角度来看,创新石墨化技术能更精准地调控碳原子排列。例如,采用先进的高温脉冲加热技术,可在极短时间内将温度提升至石墨化所需的超高温区间,促使碳原子迅速且有序地排列成高度规则的石墨晶体结构。相比传统工艺,以此法生产的碳材料,其电学性能大幅提升,在锂离子电池负极材料应用中,显著增强电池的充放电效率与循环寿命,满足新能源汽车等领域对高性能电池的严苛需求。在力学性能方面,经创新技术处理的碳材料,其晶体结构更加致密稳定,用于制造航空航天结构件时,能在减轻重量的同时提升部件强度与可靠性。创新石墨化技术对生产效率的优化也成效显著。连续式石墨化工艺便是典型代表,摒弃了传统间歇式生产的弊端,实现了碳材料的不间断进料与出料。搭配自动化的上料、卸料及温度控制系统,每小时可处理数吨原材料,极大缩短生产周期。以某大型石墨电极生产企业为例,引入连续式石墨化技术后,年产量提升了数倍,有效缓解市场供应压力,降低单位产品的生产成本。在绿色环保成为产业发展重要趋势的当下,创新石墨化技术在节能减排方面发挥关键作用。一些新型石墨化炉采用效率高的隔热材料与智能控温系统,大幅降低热量散失,减少能源消耗。部分企业研发的等离子体石墨化技术,利用等离子体的高能特性,在相对较低的温度下实现石墨化过程,进一步降低能耗。在废气处理方面,创新技术通过优化工艺,减少了生产过程中粉尘、挥发性有机物等污染物的产生,同时配备先进的尾气净化装置,确保废气达标排放,助力碳材料产业向绿色可持续方向发展。创新石墨化技术凭借在提升碳材料性能、提高生产效率以及实现节能减排等多方面好的表现,为碳材料产业注入强大发展动力,带领产业不断升级,在新能源、高端制造等众多领域开拓更为广阔的应用空间,推动整个碳材料产业迈向高质量发展新阶段。

03 June 2025
真空速凝炉如何突破传统设备周期性生产导致的效率瓶颈

真空速凝炉如何突破传统设备周期性生产导致的效率瓶颈

真空速凝炉如何突破传统设备周期性生产导致的效率瓶颈在金属材料制备领域,传统速凝设备长期受制于周期性生产模式带来的效率瓶颈。单炉次生产周期长、设备利用率低、能耗波动大等核心问题,严重制约着高性能金属材料的规模化供应。真空速凝炉通过重构工艺逻辑与设备架构,为突破这些行业痛点提供了系统性解决方案。传统周期性生产模式的效率损耗主要源于三大技术短板。首先是设备空置率居高不下,常规速凝设备单炉次作业时间普遍超过8小时,其中加热、冷却等非增值环节占比达40%以上。某特种合金生产企业的实测数据显示,传统设备年有效作业时间不足60%,大量产能被消耗在炉体升降温过程中。其次是工艺连续性差,批次间需进行长达2-3小时的炉膛清理与成分校验,导致生产节拍频繁中断。更关键的是能源利用效率低下,开放式炉体在反复升降温中造成35%-45%的能源浪费。真空速凝炉通过工艺环境创新实现生产节拍优化。其密闭腔体设计支持快速抽真空与气氛置换,单炉次准备时间缩短至传统工艺的1/3以下。某磁性材料制造商的对比测试表明,在NdFeB速凝薄带生产中,真空设备的单炉次周期从传统工艺的9.2小时压缩至5.8小时,设备台时产量提升58%。这种效率跃升源于真空环境对工艺流程的改造——加热、熔炼、速凝、冷却等工序在密闭空间内实现无缝衔接,彻底消除传统工艺中必须的开炉降温、环境清理等非生产环节。连续化生产模式是真空速凝炉突破效率瓶颈的核心创新。通过多工位旋转平台与智能温控系统的协同,设备可实现"熔炼-速凝-冷却"的循环作业。当炉次进入冷却阶段时,第二个炉次已启动熔炼程序,设备利用率从传统模式的55%提升至85%以上。某高端轴承钢生产企业的实践数据显示,采用真空连续速凝工艺后,年产能从1200吨跃升至2100吨,设备综合效率(OEE)提升37个百分点。这种连续作业模式特别适用于小批量、多品种的生产场景,换型准备时间缩短至20分钟以内。在能源管理方面,真空速凝炉展现出复合节能优势。其密闭腔体与效率高保温结构使热损耗降低60%以上,配合智能功率调节系统,单位产量能耗较传统工艺下降42%。某新能源汽车电机材料供应商的实证表明,在年产能5000吨规模下,真空工艺每年可节省标准煤1800吨,减排二氧化碳4700吨。这种节能效应在高温合金、储氢合金等高能耗材料制备中表现尤为显著。从质量控制视角看,真空环境带来的工艺稳定性提升同样关键。传统速凝工艺中,空气中的氧、氮等杂质会在材料表面形成氧化层,导致成分偏析和性能波动。真空速凝炉将氧含量控制在5ppm以下,使合金成分均匀性提升3-5个等级。某精密合金制造商的检测数据显示,采用真空工艺后,产品标准偏差从0.18%降至0.06%,高端产品合格率突破99.2%。当前,真空速凝技术已在航空航天、新能源汽车、电子信息等战略领域形成规模化应用。随着3D打印用金属粉末、高熵合金等新型材料需求的持续增长,这项技术为破解周期性生产瓶颈提供了可靠路径。通过工艺逻辑的深度重构,真空速凝炉不仅实现生产效率的质变,更推动着金属材料制备行业向连续化、智能化方向加速转型。