行业动态

聚焦行业动态,洞悉行业发展

石墨化炉的冷却方法简析
发布时间:2021-10-07   浏览:5808次

  石墨化炉的冷却方法

  石墨化炉在运行中,炉温达2300℃以上,导电电极与炉芯连结的一端就是在这样的高温下进行工作。导电电极的另一端与铜母线相连接,这就要保证与铜板的连接处的温度要低于铜板的融化温度,同时,因导电电极裸露在空气中,必须在低于氧化温度下工作。为此,一定要进行强制冷却。目前基本有两种冷却方式。

  1、直接淋水冷却:

  以钻孔水管横架于导电电极上,浇水于导电电极及其与铜母线的连接处,使之冷却。这种直接冷却方式简单、方便,冷却效果好。缺点是,冷却水四溅,易对炉体渗水。而且这种方式需要安装一泄水槽,水槽易阻塞,不及时处理,槽内水就容易渗入炉内,喷淋水也容易渗入炉内,使炉子的寿命周期缩短,同时易使炉内产品氧化。另外,在北方,冬季水槽四周容易结冰较多,不易处理。

  2、直接内冷:

  在导电电极镗孔后直接用丝堵堵上,再接上一长一短两根水管,让水直接流到电极的圆孔后再排出,从上述意义讲,人造石墨只能称作一种“多晶石墨”。不过这种“多晶石墨”已具备了理想石墨的基本特性。

石墨化炉

  3、金刚石的晶体结构

  在金刚石的晶体结构中每个碳原子与相邻的四个碳原子以共价键结合,呈正四面体配位,属于等轴晶系,金刚石是典型的原子晶体,金刚石的这种结构特征,决定了金刚石不导电,导热性也很差。在隔绝空气的条件下加热到1000℃时,金刚石转变为石墨结构,在空气中加热到780℃左右会燃烧而生成二氧化碳。使用纯度较高的人造石墨在高温、高压下可以获得人造金刚石,但是这种人造金刚石的颗粒比较小。

  这种方式的优点是易将水系统做成全封闭或半封闭系统,不会向炉内渗入。因为可以不用泄水槽,从而,用此方法的厂家,多把水系统做成半封闭系统。缺点是:冷却效果不如直接淋水冷却,对水质要求较高,严禁缺水。否则炉头温度升高,再忽然通入冷水,易产生水爆,十分危险。

  石墨化炉侧墙分固定墙和活动墙

  固定式侧墙一般采用耐火砖砌筑,每隔一定间隔都要留一排气孔,以使送电过程中炉芯内的烟气能顺利排出。使用耐火砖做侧墙,保温效果好,使用寿命也稍长,但造价较高。

  活动式侧墙是由水泥、粘土、耐火砖碎块等按一定比例配制而成,墙上留有排气孔。使用时将活动侧墙吊放在炉两侧、由槽钢做成的柱子间。活动式侧墙的优点是经济、省工,且冷却炉子时方便。缺点是不耐机械冲击和热冲击,以及破损不能修补等。

  此外,现在还出现了下半部为固定式,上半部为活动式的混合型侧墙,兼顾了两者的优点,使用效果比较理想。槽钢(或铸铁支架)主要起固定侧墙的作用。通电炉芯由被加热的产品和中间填充电阻料组成。通电后炉体有一定的热胀力。

免责声明:本站部分图片和文字来源于网络收集整理,仅供学习交流,版权归原作者所有,并不代表我站观点。本站将不承担任何法律责任,如果有侵犯到您的权利,请及时联系我们删除。

相关推荐

22 December 2025
石墨化炉与其他高温炉窑的性能对比

石墨化炉与其他高温炉窑的性能对比

石墨化炉与其他高温炉窑的性能对比在材料加工领域,高温炉窑是实现特定工艺的关键设备。石墨化炉作为其中一种,与其他常见高温炉窑在性能上存在诸多差异。从加热能力来看,石墨化炉优势显著。它能营造出 2000℃ - 3000℃的超高温环境,以满足碳材料石墨化对温度的严苛要求。相比之下,普通工业电阻炉通常工作温度在 1000℃ - 1800℃,主要用于一般金属热处理等工艺,难以达到石墨化所需高温。即使是高温实验炉,虽可实现较高温度,但在长时间稳定维持 2000℃以上高温方面,往往不及石墨化炉。这使得石墨化炉在处理需要深度结构转变的碳材料时,具有无可替代的地位。温度均匀性对产品质量影响重大。石墨化炉在设计上注重炉内温度场的均匀分布,通过合理布置加热元件、优化炉体结构等方式,确保炉内各区域温度偏差控制在较小范围。例如,在大型石墨化炉中,采用多组加热元件分区加热,并配备智能控温系统,可将温度均匀性控制在 ±10℃以内。一些传统高温窑炉,如部分陶瓷烧制窑炉,由于其主要关注产品整体烧成效果,对温度均匀性要求相对较低,在炉内不同位置可能存在较大温度梯度,这在石墨化工艺中是无法接受的,因为温度不均会导致碳材料石墨化程度不一致,影响产品性能。能耗是考量高温炉窑运行成本的重要因素。石墨化炉因需达到超高温度,且维持时间较长,能耗相对较高。不过,随着技术发展,新型石墨化炉采用效率高的隔热材料、改进加热方式等手段,能耗已有所降低。相比之下,一些用于玻璃熔化的池窑,虽然工作温度也较高,但由于其连续生产、规模大且工艺相对成熟,在单位产品能耗上可能低于石墨化炉。但在处理特定碳材料时,石墨化炉的高温特性决定了其能耗难以与处理常规材料的高温炉窑简单类比,需综合考虑产品价值与能耗成本。在适用材料方面,石墨化炉主要针对碳材料,通过高温使碳原子重排形成石墨结构,提升碳材料性能。而其他高温炉窑用途更为广泛,如耐火材料窑炉用于烧制各类耐火砖,其对材料的要求侧重于耐火度、热震稳定性等,与石墨化炉对碳材料微观结构改造的需求截然不同。石墨化炉在加热能力、温度均匀性及适用材料等性能上,与其他高温炉窑存在明显差异。在选择高温炉窑时,需根据具体工艺要求、材料特性及成本考量,合理选用,以实现好的生产效果。

01 June 2019
真空熔炼炉应用应用前景分析

真空熔炼炉应用应用前景分析

  真空熔炼炉炼技术是目前对金属材料加热效率高、速度快,低耗节能环保型的感应加热技术。该技术主要在感应熔炼炉等设备上实现,应用范围十分广泛。   固态的金属原材料放入由线圈缠绕的坩埚中,当电流流经感应线圈时,产生感应电动势并使金属炉料内部产生涡流,电流发热量大于金属炉料散热量的速度时,随着热量越积越多,到达一定程度时,金属由固态熔化为液态,达到冶炼金属的目的。   在此过程中,由于整个过程发生在真空环境下,因此,有利于金属内部气体杂质的祛除,得到的金属合金材料更加纯粹。同时在真空熔炼炉冶炼过程中,通过真空环境以及感应加热的控制,可以调整熔炼温度并及时补充合金金属,达到精炼的目的。在熔化过程中,因为感应熔炼技术的特点,液态的金属材料在坩埚内部由于受到电磁力的相互作用,可以自动实现搅拌,使成分更加均匀,这也是感应熔炼技术的一大优势。   与传统的冶炼相比,真空熔炼炉节能,环保,工人作业环境好,劳动强度小,具有很大优势。利用感应熔炼技术,浇注的合金材料杂质更少,添加的合金比例更加合适,能够更加符合工艺对材料各性能的要求。   所以该炉子技术目前已经得到大规模的使用,从用于试验研究的几千克感应炉到用于实际生产的几十吨容量的大型真空熔炼炉。由于其操作工艺简单,熔化升温快熔炼过程容易控制,所冶炼金属成分均匀等优点,具有很大的应用前景,近些年得到了快速的发展。