行业动态

聚焦行业动态,洞悉行业发展

真空熔炼炉无法完成热处理的原因有哪些
发布时间:2021-04-19   浏览:4096次

  真空熔炼炉无法完成热处理的原因有哪些

  我们在使用真空熔炼炉的时候,也会面临有些热处理工艺在真空炉上无法完成的问题,究其原因,大致有两个方面:

  一是真空熔炼炉生产厂家按照真空炉的标准生产的真空炉,虽然各项技术参数合格,但在生产真空炉的过程中没有***系统地去考虑热处理工艺问题,导致了真空炉参数和热处理工艺参数不匹配。

真空熔炼炉无法完成热处理的原因有哪些

  二是真空热处理工艺过程存在缺陷,无法实现想要的结果。在这方面八佳做了大胆的尝试与创新,该公司把热处理工艺制定与真空熔炼炉制造有机的结合在一起,效果明显。

  洛阳八佳拥有多种成熟的热处理工艺,通过专家授课方式让熔盐电解炉设计研发团队了解每一种工艺的过程和细节,并应用在设计实践中,让真空炉设计制造与热处理工艺***契合,每台真空熔炼炉出厂前,都要经过本公司热处理生产工艺的实战性热调试,达标安装好后,即可投入使用,同时该公司还为用户提供成熟的热处理工艺技术支持,为真空炉用户解决了后顾之忧。

免责声明:本站部分图片和文字来源于网络收集整理,仅供学习交流,版权归原作者所有,并不代表我站观点。本站将不承担任何法律责任,如果有侵犯到您的权利,请及时联系我们删除。

相关推荐

19 August 2024
真空烧结炉的各部分性能分析

真空烧结炉的各部分性能分析

真空烧结炉的各部分性能分析真空烧结炉,作为一种关键的材料制备设备,在现代工业生产及材料科学研究中发挥着不可或缺的作用。其独特的真空环境为材料提供了理想的烧结条件,使得制备出的材料具有优异的性能。真空烧结炉厂家八佳电气将详细解析真空烧结炉的组成及各部分的功能,以期为读者提供深入的了解。一、真空烧结炉的总体构成真空烧结炉主要由炉体总成、保温套、石墨发热体、集电装置、真空系统、水冷系统、变压器、电控系统等部分组成。这些部分相互协作,共同实现材料的真空烧结过程。二、各部分的详细功能与特点炉体总成炉体总成是真空烧结炉的主体结构,通常采用内外层不锈钢(304)结构,以确保设备的耐高温性和耐腐蚀性。炉体采用圆形上开盖设计,便于样品的装卸。炉体侧面设有真空管道、充气阀、排气阀、进电法兰等接口,便于与外部设备的连接和操作。炉体底部留有安装等用的法兰接口,方便设备的安装和维护。保温套保温套是真空烧结炉的重要组成部分,其主要功能是减少能量损失和热辐射,提高设备的热效率。保温套一般由三层石墨碳毡围成筒形,碳毡外有2层硅酸铝纤维毡,外面再由不锈钢壳组成。这种设计能够确保炉体在加热过程中保持稳定的温度分布,提高烧结质量。石墨发热体石墨发热体是真空烧结炉的加热元件,负责提供烧结所需的热量。它由12根石墨棒通过上下石墨圈组合而成,石墨棒下通过三根石墨电引入三相电。通过低电压大电流使石墨发热,实现炉膛内的快速升温。石墨发热体具有耐高温、耐腐蚀、热稳定性好等优点,能够满足各种材料的烧结需求。集电装置集电装置主要由法兰板、进电铜管、铜排及附属零部件组成,其主要功能是将变压器与石墨发热体连接在一起,完成电和水的供给。集电装置的设计需要考虑到电流的稳定性和安全性,以确保烧结过程的顺利进行。真空系统真空系统是真空烧结炉的关键部分之一,它负责在烧结过程中维持炉膛内的高真空度。真空系统主要由机械泵、分子泵、油封泵、阀门等组成。这些设备通过协同工作,将炉膛内的气体抽出,形成所需的真空环境。真空度的控制对于烧结过程至关重要,它影响着材料的烧结质量和性能。水冷系统水冷系统用于对真空烧结炉的某些部件进行冷却,以防止设备在长时间高温运行下发生损坏。水冷系统由水排、各分水路、阀门、压力表等组成,能够根据设备的实际需求进行灵活的冷却控制。变压器变压器是真空烧结炉的电源设备,负责将电网中的电能转换为适合烧结过程所需的电能。变压器需要具有稳定的输出电压和电流,以确保烧结过程的顺利进行。电控系统电控系统是真空烧结炉的控制中心,它负责对整个设备的运行进行监控和控制。电控系统通常包括自动控温仪表、PID调节器、温度记录仪等部分,能够根据设定的温度曲线对加热系统进行调节,实现对烧结过程的精确控制。真空烧结炉作为现代工业生产及材料科学研究中不可或缺的设备之一,其组成与功能具有高度的复杂性和专-业性。通过本文的解析,我们可以清晰地了解到真空烧结炉的各个组成部分及其功能特点。这些部分相互协作,共同实现了材料的真空烧结过程,为制备高性能材料提供了有力的支持。

12 December 2022
如何测量石墨化炉的温度

如何测量石墨化炉的温度

  如何测量石墨化炉的温度  石墨化炉的炉芯内各种温度存在较大的差异,但是在工业生产的时候,每个炉子的测定温度是不可取的。因此,炉温主要是通过开始功率以及上升功率及全炉的佳话消耗电量的方式来进行间接的控制。但是有的时候为了试验性的通电曲线,了解炉芯温度分布和研究温度,也是需要进行炉温的测量的。  比如说石墨化炉炉芯温度在低温1600℃以下的时候,可以用热电偶和自动平衡记录仪来测定,而1600℃以上的话则可以用光学高温计或者光电高温计来进行测量,一般较大的量程可以打动3200℃,相当于翻了一倍。  一般软炭(如沥青焦、石油焦等)经过2500--3000℃的高温石墨化炉热处理后,会转化为石墨结构,但该过程极其复杂,既涉及石墨微晶在径/轴向的有序排列、晶界的消失、晶体界面处六圆环的形成、晶体的生长,还涉及石墨层边界处不饱和碳原子的催化反应、碳原子或气体分子的热震动、石墨微晶的各向异性特性、石墨层层间的范德华力等微观热力学或动力学行为。  石墨化炉厂家表示,目前,热处理温度与材料石墨微晶参数之间的内在关系已得到系统研究,而石墨化机理的基础研究较少。本工作以煤系针状焦为原料,在分析热处理温度对针状焦微结构的影响规律的基础上,深入研究了针状焦的石墨化机理及其用作锂离子电池负极材料的电极性能和储锂机制。