行业动态

聚焦行业动态,洞悉行业发展

真空熔炼炉向外传递的因素的三大要素
发布时间:2018-07-09   浏览:3389次

   根据温度场分布方程可知,真空熔炼炉整个温度场的分布主要取决于几个方面的约束。即材料的平均导热系数入,材料的平均密度P和平均比热熔度。

  影响真空熔炼炉温度向外传递的因素,包括以下3点:

  在该设计中,主要采用内热源形式。真空熔炼炉内部热源发热,温度由里至外传递。其强度大小直接影响炉内温度分布情况。可以看出,当内热源吼越高时,一定点的温度越高,同时一定温差(△T)的分布区域(r)越大。所以,在实际生产过程中,可以通过控制炉芯的表面负荷亦即炉芯功率控制炉内温度分布。

  反应料距炉芯的距离(△r),当炉芯功率一定时,即内热源的强度一定时,距离炉芯越远的反应料,温度越低,可能无法达到反应所需温度。距离真空熔炼炉炉芯越近,温度越高,越利于反应进行。

  另外,真空熔炼炉料的散热性能越好,内部热量向外流失越快,热量很轻易就损耗在反应料之外,使一定点的温度降低。但是,如果反应料的散热性能不好,则利于热量的汇聚,使得热量向外传递时间加长,有利于反应料对热量的吸收和反应地进行,提高一定点的温度。应都在高真空条件下(4~13Pa)进行,反应温度1200℃左右,芯温度很快就能达到所需值,因此反应时间的长短取决于反应料的厚度,即炉芯外围反应料到炉体保温层的距离。可以通过设计炉体尺寸控制供电时间。

1465348286821473.jpg


免责声明:本站部分图片和文字来源于网络收集整理,仅供学习交流,版权归原作者所有,并不代表我站观点。本站将不承担任何法律责任,如果有侵犯到您的权利,请及时联系我们删除。

相关推荐

12 March 2024
探秘气相沉积炉的工作原理与应用领域

探秘气相沉积炉的工作原理与应用领域

  探秘气相沉积炉的工作原理与应用领域  气相沉积炉,作为现代材料科学领域的一种重要设备,以其独特的工作原理和广泛的应用领域引起了广泛关注。这种设备通过精确控制气体化学反应,实现材料在基体上的逐层沉积,从而制备出具有特定结构和性能的材料。气相沉积炉厂家八佳电气将深入剖析气相沉积炉的工作原理,探讨其应用领域,并展望未来的发展趋势。  一、气相沉积炉的工作原理  气相沉积炉的工作原理主要基于化学反应和物理过程,通过控制气体分子在基体表面的沉积和反应,从而制备出所需的材料。  气体输运:在气相沉积炉中,首先需要将反应气体引入炉内。这些气体可以通过管道系统精确地输送到炉内的反应区域。  化学反应:当反应气体到达炉内的反应区域时,它们会在一定的温度和压力条件下发生化学反应。这些化学反应可以是分解、还原、氧化等,具体取决于所使用的气体种类和反应条件。  材料沉积:随着化学反应的进行,生成的物质会逐渐沉积在基体表面。这些沉积物可以是薄膜、纳米颗粒或其他形态的材料。通过精确控制反应条件和沉积过程,可以实现材料在基体上的逐层生长。  二、气相沉积炉的应用领域  气相沉积炉在多个领域具有广泛的应用价值,特别是在材料制备、电子器件、光学器件以及能源转换等领域。  材料制备:气相沉积炉可用于制备各种高性能的薄膜材料,如金属、氧化物、氮化物等。这些薄膜材料在航空航天、电子、光学等领域具有广泛的应用。  电子器件:气相沉积炉在电子器件的制造过程中发挥着重要作用。通过精确控制沉积过程,可以制备出高质量的半导体材料、导电薄膜以及绝缘材料等,用于制造集成电路、传感器、显示器等电子器件。  光学器件:气相沉积炉还可用于制备光学薄膜和涂层,如反射镜、透光膜、滤光片等。这些光学器件在通信、激光、显示等领域具有重要的应用。  能源转换:气相沉积炉在能源转换领域也展现出广阔的应用前景。例如,在太阳能电池中,气相沉积炉可用于制备光吸收层、电子传输层等关键材料,提高太阳能电池的转换效率。此外,气相沉积炉还可用于制备燃料电池、锂电池等能源存储器件的关键材料。  三、气相沉积炉的技术优势与挑战  气相沉积炉的应用带来了诸多技术优势,如高精度、高纯度、高灵活性等。然而,也面临着一些挑战,如设备成本较高、工艺参数控制难度大等。随着技术的不断进步和创新,气相沉积炉有望在材料制备和器件制造领域发挥更大的作用。  四、总结与展望  通过对气相沉积炉的工作原理与应用领域的深入探讨,我们可以看到这一设备在材料科学和工业界的重要地位。随着科技的不断进步和创新,气相沉积炉有望在更多领域得到应用,推动材料制备和器件制造技术的发展。未来,我们可以期待气相沉积炉在设备性能提升、工艺优化以及智能化等方面取得更多突破,为人类社会的进步和发展做出更大贡献。

02 September 2019
烧结炉碰到异常情况要如何解决

烧结炉碰到异常情况要如何解决

  烧结炉碰到异常情况要如何解决   就用途和使用条件来说,烧结层是烧结炉炉底的主工作层。烧结层应该承受装料时动负荷的重力而不破坏,经受全部炉料的静负荷而不变形。由于经常处在高温作用的条件下,烧结层应该具有足够的稳定性,以便抵抗钢水和熔渣的物理一化学作用。此外,烧结层沿整个熔池面积的必然损坏应该是均匀的,以便保证熔炼工艺过程正常的进行。   烧结层的寿命、侵蚀和破坏特性取决于其制作质量与条件、烧结方法和材料成份。这里小编为大家整理了一些烧结炉碰到异常情况的解决方法,仅供大家参考:   一、冷却水异常   1、确认加热电源已停止   2、烧结炉炉外发生漏水,冷却水量异常时,应尽快采取应急措施,如能保证水量,请继续保持真空,如不能采取应急措施,保持原状,确认设备冷却下来。   3、冷却水发生异常时,设备处于停止状态,马上接通紧急用冷却水。   4、在高温(超过200℃即视为高温)时,如果冷却水停止了,如果不能紧急送水,水冷电极、换热器、真空室壳体及各泵可能被损坏。   二、压缩空气的停止   1、压缩空气异常报警时,设备处于停止状态,应尽快到备用的压缩机房,让其恢复工作。   2、真空中如压缩空气异常报警,且恢复需要较长时间时,则终止真空,让烧结炉停下来。   三、停电   1、停电时,如果断水,应立即接通备用的冷却水,接通水源。   2、如果在非升温、加热和冷却时,能够尽快恢复时,重新启动烧结炉,继续运转如需要较长时间,则将设备保持原状。   3、如果正在加热和冷却时,能够尽快恢复时,重新启动真空甩带炉,如果需要较长时间时,则保持原状,让设备自然冷却下来。