常见问题

聚焦行业动态,洞悉行业发展

真空烧结炉日常应急策略
发布时间:2017-10-23   浏览:2912次

  真空烧结炉主要用于半导体元器件及电力整流器件的烧结工艺,可进行真空烧结,气体保护烧结及常规烧结,是半导体专用设备系列中一种新颖的工艺装备,它设计构思新颖,操作方便,结构紧凑,在一台设备上可完成多个工艺流程。亦可用于其他领域内的真空热处理,真空钎焊等工艺。下面,洛阳八佳科技小编就为您介绍真空烧结炉的应急措施.

微信图片_20171019140752.jpg

  一. 冷却水异常

  1、确认加热电源已停止。

  2、炉外发生漏水,冷却水量异常时,应尽快采取应急措施,如能保证水量,请继续保持真空,如不能采取应急措施,保持原状,确认设备冷却下来。

  3、冷却水发生异常时,设备处于停止状态,马上接通紧急用冷却水。

  4、在高温(超过200℃即视为高温)时,如果冷却水停止了,如果不能紧急送水,水冷电极、换热器、真空室壳体及各泵可能被损坏。

  二 压缩空气的停止

  1、压缩空气异常报警时,设备处于停止状态,应尽快到备用的压缩机房,让其恢复工作。

  2、真空中如压缩空气异常报警,且恢复需要较长时间时,则终止真空,让设备停下来。

  三 停电

  1、停电时,如果断水,应立即接通备用的冷却水,接通水源。

  2、如果在非升温、加热和冷却时,能够尽快恢复时,重新启动设备,继续运转如需要较长时间,则将设备保持原状。

  3、如果正在加热和冷却时,能够尽快恢复时,重新启动设备,如果需要较长时间时,则保持原状,让设备自然冷却下来。

  四 加热电源掉电

  1、水压低,当水压低于0.15MPa,压力表报警。

  2、接地故障。

  3、真空放电,水冷电极接头与加热器连接处必须连接牢固,与反射屏绝缘要好。

  4、若炉内压力为13.3-66.5Pa时(此真空度容易发生放电)。电源出现故障,掉电的原因可以认为由于电介质击穿而引起的放电。

  五 充气气体(氩气或氮气)停止

  1、抽真空开始前,气体充入时间长或者无法充入时,请确认气体管路是否被堵塞。

  2、如气体管路没问题,检查电磁阀及气体充气阀的动作,为了安全与其相关联的设备要全部停止后再进行检查。

  3、向真空室内充气不能停止的情况下,泄压阀动作如泄压阀动作时,要关闭气体供给阀及配管在内的所有气体系统。

  4、确认气体充气配管是否有漏气的地方,如有会影响制品质量。

  六 真空室压力恶化

  1、真空排气时间比通常长时,应把设备停下来进行检查,根据真空室内构造物不同状态下放气的影响,也有导致压力升高的情况。

  2、通过压力上升测试或者用氦气检漏来确认是漏气还有放气的影响。

  在真空和保护性气氛中,对金属、陶瓷及一些难熔金属中间化合物粉末加热烧结,要获得一定密度和具有一定机械性能的材料时,一般采用两种工艺;即有压烧结和无压烧结。有压烧结工艺是将粉状材料置于真空和保护性气氛中的高碳模具中,高温加热到软化状态时,加压成型。这种工艺需要一种真空热压烧结才能实现。该烧结炉具有温度高、真空度高、热压力高的特点。目前这种炉型在我国还未见定型产品。

PA炉2.jpg

免责声明:本站部分图片和文字来源于网络收集整理,仅供学习交流,版权归原作者所有,并不代表我站观点。本站将不承担任何法律责任,如果有侵犯到您的权利,请及时联系我们删除。

相关推荐

10 February 2025
气相沉积炉CVD和PVD在性能上有何区别?

气相沉积炉CVD和PVD在性能上有何区别?

气相沉积炉CVD和PVD在性能上有何区别?气相沉积技术作为现代材料科学领域的重要分支,在微电子、光电子、机械制造等多个领域都有着广泛的应用。其中,化学气相沉积(CVD)和物理气相沉积(PVD)作为两种主要的薄膜沉积技术,各自具有独特的性能特点和应用优势。气相沉积炉厂家洛阳八佳电气将从多个维度对CVD和PVD在气相沉积炉中的性能区别进行深入探讨。 一、工作原理与工艺过程CVD技术是通过将气态或蒸汽态的物质引入反应室,在气相或气固界面上发生化学反应生成固态沉积物。这一过程通常在高温下进行,利用化学反应物在基板表面的流动特性,实现薄膜的均匀、高度保形沉积。而PVD技术则是通过物理方法,如蒸发、溅射等,使固体材料在真空条件下汽化成气态,进而凝结成薄膜沉积在基材表面。 二、薄膜均匀性与质量控制CVD工艺由于化学反应发生在基板表面,能够利用气体的流动特性,在不规则形状的表面上构建均匀、高度保形的薄膜。这使得CVD在制备复杂形状和大面积基片的薄膜时具有显著优势,能够实现较好的薄膜均匀性。相比之下,PVD工艺在薄膜均匀性方面可能稍逊一筹,尤其是在处理大面积基片时,可能存在厚度不均匀的情况。 三、生长速率与生产效率CVD工艺具有较高的生长速率,适合大面积薄膜的快速制备。这一特点使得CVD在批量生产中具有显著优势,能够通过规模经济节省大量成本。而PVD工艺的生长速率相对较慢,更适合小规模生产。然而,随着技术的不断进步,PVD工艺的生长速率也在不断提升,逐渐满足了更多领域的需求。 四、设备复杂性与维护成本CVD设备结构较为复杂,操作参数众多,维护成本相对较高。同时,由于CVD过程中涉及高温和化学反应,对设备的耐高温和耐腐蚀性能提出了较高要求。相比之下,PVD设备结构相对简单,操作参数少,易于控制和维护,适合小规模生产。此外,PVD工艺对环境的影响较小,更加环保。 五、应用领域与材料选择CVD工艺由于能够实现复杂化合物薄膜的制备,适用于对薄膜均匀性、复杂性和生长速率要求较高的领域,如半导体器件制备、光电子器件等。而PVD工艺则适用于对成本、易操作性和中小规模生产需求较为突出的场景,如金属涂层、装饰膜等。此外,PVD工艺在制备高纯度金属薄膜方面也具有独特优势。 六、总结与展望综上所述,CVD和PVD在气相沉积炉中的性能存在显著区别。CVD工艺在薄膜均匀性、生长速率和复杂化合物薄膜制备方面具有优势,适用于大规模生产和高端应用领域;而PVD工艺在设备简单性、成本控制和环保方面具有优势,适用于中小规模生产和特定应用场景。展望未来,随着科技的不断进步和产业需求的不断变化,CVD和PVD技术将不断发展和完善。通过技术创新和工艺优化,这两种技术有望在更多领域发挥重要作用,推动相关产业的持续发展。